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We extend our previous Monte Carlo studies of dendritic growth to the fully three-dimensional
situation and demonstrate a Mullins-Sekerka instability due to the presence of a thermal gradient.
We also study the thermal diffusion process associated with the instability, and identify important

aspects of its role.
PACS number(s): 68.70.4+w, 68.10.—m

I. INTRODUCTION

The Mullins-Sekerka instability and the complexities of
dendritic growth have become an important topic in con-
temporary condensed-matter physics. They have been
extensively discussed in the literature [1-4]. In this arti-
cle, we describe the first Monte Carlo simulations of the
Mullins-Sekerka instability in three dimensions (3D). Our
article describes the application of a lattice-gas Monte
Carlo algorithm to interfacial dynamics and makes con-
tact with basic theory. Our present results deal entirely
with two-dimensional interfaces in three space dimen-
sions, so that the influences of lattice anisotropy and the
roughening transition are implicitly included.

We first give an outline of our algorithm, which we
have described in detail elsewhere [5]. We note that its
applicability to dynamical problems has been well estab-
lished [5, 6]. We also review the properties of our sim-
ple Hamiltonian, which models a system with first-order
phase transition. We show how the latent heat of this
transition enters in a natural way, and how it can be used
to control the dynamics. We examine the ramifications
of working with the simple cubic lattice and focus on con-
figurations featuring a (111) interface. Typical dendrite
simulations are shown and results are compared to basic
theory. In the discussion, we compare and contrast our
results with our previous data for two dimensions [5] and
discuss the limitations of the current implementation of
our model.

II. THE ALGORITHM AND THE HAMILTONIAN

The algorithm used is a variation of the deterministic
Creutz demon algorithm. It has been discussed exten-
sively in a previous publication [5] and will therefore only
be outlined here.

The basic simulation system is a cubic lattice of N
Ising spins. The lattice has periodic boundary condi-
tions along the four sides, but the top and bottom of
the system are maintained as if in contact with infinite
heat baths at temperatures 75, and T,. Each spin has
two possible values o; = £1 and an energy as defined by
a Hamiltonian H(o;) (see below). Associated with each
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spin is a demon carrying a non-negative amount of en-
ergy. Spin dynamics is implemented by inspecting the
demon of a selected spin to see if it has the energy AE
required to flip that spin. If the energy required is neg-
ative (energy is liberated), the spin flips and the energy
is given to the demon. If the energy required is positive
and less than the energy held by the demon, the spin flips
and the energy is taken from the demon. If there is insuf-
ficient energy available for the flip, neither the spin nor
the demon changes. The spin sites are visited in random
order with one Monte Carlo step (MCS) being defined
as N visits. The combined energy of the spin and de-
mon systems is conserved but the spin number Ef;l o;
is not; this is in the universality class of model C of criti-
cal dynamics in the language of Hohenberg and Halperin
[7].

Despite the discrete nature of the energy exchanges,
it has been shown that each demon’s energy distribution
over time conforms to Boltzmann statistics [8]. Conse-
quently, a local temperature can be assigned to each spin
based upon its demon’s average energy; the demon en-
ergy can be interpreted as the kinetic energy of a site in
a vibrating lattice. As will be shown later, spatial av-
eraging of the demon lattice provides a good measure of
the local temperature at length scales larger than three
lattice spacings despite the nonequilibrium nature of the
simulation. At either end of the system, the heat baths
are maintained by controlling the spin-flip dynamics with
standard Metropolis techniques. In this way, a tempera-
ture gradient can be imposed across the entire system and
the demon lattice then becomes the medium for thermal
diffusion.

The energy of a spin is determined by the Hamiltonian

H= —JZU,‘O'J‘ —AZO‘,',
%

(i,3)
where 3, ;) is over nearest neighbors and A is a uniform
external field. Setting A = 0 gives H(o;) for the simple
Ising model which has a second-order phase transition at
T, =2 4.541 J (in 3D). The presence of A ensures that in
the ground state, all spins o; have the value +1.
A latent heat is added to the system by defining each
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spin state to be energetically degenerate; spin o+ has
6+ states of the same sign. This can be shown to in-
troduce a first-order phase transition at temperature
T = 2A/In(6) where 8§ is the ratio of degeneracies,
6 = 6_/64+, and must be greater than 1. The latent
heat A is then of order 2A.

Several other quantities are required to fully describe
the Mullins-Sekeraka instability. The surface tension
~ and its anisotropy in the three-dimensional nearest-
neighbor Ising model is well defined [9]. The heat capac-
ity C' can be derived through mean-field theory and has
been confirmed by simulation. The thermal diffusion con-
stant D is more difficult to ascertain as it is the product
of the particular spin-flip dynamics which couple the spin
and demon systems. It must be determined empirically
and it shows a strong temperature dependence, falling to
zero very quickly with decreasing T'. In Appendix A, we
give typical values of all relevant parameters.

III. LATTICE GEOMETRIES

In an attempt to sample the range of instability phe-
nomena exhibited by the lattice-gas model, a variety of
approaches to modeling an unstable interface have been
examined. Each has its advantages either in coding or
in its relationship to a physical experiment. In all cases,
the simulation model is a lattice of N Ising spins of di-
mension Nz X Ny x N,. The thermal gradient is initially
perpendicular to the interface and parallel to the z direc-
tion.

The simplest geometry is a simple cubic lattice with
an interface initialized between two bulk phases and ori-
ented along the [001] direction. An interface with this
orientation has a roughening transition at a temperature
Tr ~ 0.54T, [10]. This means that, at temperatures be-
low Tg, the interface tends to form flat, facetted regions
which are parallel to the initial interface [or the (100)
and (010) planes]. These facets are surfaces of minimum
energy which resist the formation of steps; the step free
energy is nonzero below T and vanishes at the roughen-
ing transition. The preferred or easy directions of growth
are those perpendicular to planes which have Tr = 0.
Consequently, any instability initiated on the (001) plane
is subject to strong facetting; simulations carried out in
this geometry rarely show any useful dynamics.

To overcome these difficulties within the simple cu-
bic lattice, one alternative is to choose a (111) interface
such that T = 0. Details of the implementation are
found in Appendix B. Growth along the [111] direction
is preferred and, as expected, instabilities grow more eas-
ily, although they still exhibit some facetting in the 100
planes. However, the thermal gradient and the growth
are not perpendicular to these planes and growth is not
inhibited. Most of the results presented in this paper
were produced using this geometry.

To make the algorithm reasonably efficient, the code
makes use of large amounts of memory for spin and de-
mon lattices, spin fields, site lists, and the like. Hardware
memory limitations then restrict the maximum lattice
size to systems of 128 x 128 x 96 (1.5 million sites) or less.
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N, = Ny = 128 is uncomfortably close to the instabil-
ity wavelength of the simulation (typically ~ 40 lattice
units), inviting interference from finite-size effects. In
an effort to examine more accurately behavior at longer
length scales, a variation of the (111) simple cubic geom-
etry is used. It involves reducing N, to a small number
(typically N, = 8) while increasing N, and/or N, ap-
propriately. For example, systems of 8 x 1024 x 192 have
been used. We refer to such a configuration (N, < N,)
as an example of slab geometry whereas a configuration
with N, = N, is referred to as having column geometry.

There are also physical arguments which support the
use of slab geometry. On the one hand, dendrite experi-
ments with materials like succinonitrile are often carried
out between flat surfaces, such as glass [11]. Although
we recognize that there will be corrections due to the
wetting of these surfaces by the liquid, we expect that
the slab results will be of particular use when making
comparisons to experiment.

IV. KINETICS OF AN UNSTABLE INTERFACE

The solid phase is initially set at the equilibrium melt-
ing temperature T}, while the liquid phase is supercooled
at some temperature T, < T),; the interface is planar.
The instability arises [2, 5, 4] from the competition be-
tween the inhomogeneous condensation of the unstable
supercooled liquid phase onto the surface of the solid and
the tendency of the interface to relax to its equilibrium
configuration. The curvature of the interface is related to
changes in the local temperature via the Gibbs-Thomson
relation while its kinetics are controlled by thermal dif-
fusion.

The diffusion mechanism is characterized by the length
scale defined as [ = 2D /v, where D is the diffusion con-
stant and v is the velocity of the almost planar interface
in the direction of the initial thermal gradient. The time
scale for thermal diffusion is assumed to be much shorter
than the time scale for the interface dynamics; thus the
thermal field is decoupled from the instability and is com-
pletely defined by the geometry of the local interface. In
the very early time regime, linearizing the equations of
motion, while omitting the damping due to surface ten-
sion, then gives a “dispersion relation” for the damped
modes of the form

wl(@) = (@)™ = ZPa(1 - Pdol)

where do = ¥TasC/A? is the capillary length and where
the g3 term, which governs the relaxation of the interface,
is the same as for the kinetics of the equilibrium interface.
Within this linear approximation, therefore, there is a
range of wave vectors for which w is positive and which
exhibit unstable behavior. The limit of instability is at
gc = (dol)™%/2, and the most unstable wave vector is
go = (3dol)~%/2. The characteristic length scale of the
instability is therefore the geometric mean of the small
and large length scales dy and I, respectively.
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V. UNSTABLE INTERFACES

A. Results

We describe here the results of our simulation stud-
ies, including measurements of tip velocity, surface area,
and power spectra from typical configurations. A qual-
itative description of the thermal fields is also provided
to enhance understanding of the quantitative results.

As described above, a typical simulation run begins
from a flat interface with a nondegenerate bulk phase
initialized at T,,, the melting temperature and a degener-
ate bulk phase at an undercooled temperature T, < T},.
The two bulk phases are configured with spin magnetiza-
tions as predicted for their respective temperatures (near
+1 for most choices of T;,) by mean-field theory; their
demons are initialized with the appropriate Boltzmann
energy distributions. Fingerlike instabilities form imme-
diately and quickly reach the asymptotic regime (typi-

FIG. 1. Time series of cross-sectional views of a slab sys-
tem of dimension 8 x 128 x 92. This is a subsection of the
larger 8 x 1024 x 92 system used to generate data. The images
shown are for ¢ = 1000, 4000, 10000, and 26 000 MCS. The
corresponding thermal field for ¢ = 25000 MCS is shown in
Fig. 11(d).
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128x 128x96

FIG. 2. A representation of a 128 x 128 x96 column system
surface. The higher surfaces are shown in lighter greys. The
image shown is for ¢ = 3000 MCS.

cally within 400 Monte Carlo steps) where dendrite tip
velocities are constant. The dendrites continue to grow
and coarsen until the end of the run when they reach
the far side of the system. Figure 1 shows a time series
of cross-sectional slices from a slab system; the section
shown is only a selected portion of the entire interface.
Figure 2 shows a 3D representation of a column simula-
tion at late time; note that dendrite growth is limited by
the low ceiling on the system.

Tip velocity is measured by identifying the maximum
height of the interface as a function of time; while not
strictly exact, this technique is highly effective and quite
accurate for measuring the primary instability. In the
slab simulation, the tip velocity v is measured to be 3.1 x
10~2 in units of lattice spacings per MCS, for 400 >t >
1000 MCS. This result, as shown in Fig. 3, is based on
29 trials of 2400 MCS each, using a 8 x 1024 x 96 slab
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FIG. 3. Maximum height (tip position) (o) and the

(square root of the) total surface area (A) plotted against
time ¢ for a 8 x 1024 x 96 slab system. The surface area is
shown as /A(t) — A(200) to highlight the t? growth, with
A(200) being 28249 units. Data are averaged over 29 runs.
The straight dashed lines are provided as references.
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system with T,, = 0.4T,, T,, = 0.8T;, and 6 = 2.8. In
the column system of 128 x 128 x 96 with T,, = 0.3T¢,
T = 0.7T,, and § = 2.8, the tip velocity is measured to
be 2.9 x 10~2 (Fig. 4); note that this is comparable to
the slab value.

For both systems described above, the surface area
grows with a t2 power law appropriate to fingers grow-
ing at a constant rate from a 2D interface. This is also
shown in Figs. 3 and 4. The tip radii p are of order of the
unit lattice spacing (=~ 3) and tend to fluctuate strongly
due to the influence of roughening. We have found that
measurements of p are insufficiently accurate for use in
comparison with theories which relate p to v [13]. Like-
wise, there is insufficient flexibility in the parameters to
test a significant range of v (see Appendix A).

The power spectra of both these systems have also been
generated. The typical interface can have overhangs,
bubbles, and pockets. These are presumed to be unim-
portant since they occur on length scales which are much
shorter than the lengths of interest. They are therefore
masked out by projecting the multi-valued interface onto
the X-Y plane such that the interface is approximated
by an isovalued surface. The slab surface is collapsed
to a 1D interface by averaging along the shortest axis
and treated by a Fourier transform to produce the power
spectrum P(q). The column surface is treated by a 2D
Fourier transform and then averaged over all orientations
of the vector q. Figures 5 and 7 show the spectra q%P(q)
of the slab and column systems, respectively; they clearly
show the mode of maximum instability go. The expected
¢? roughening contribution at large ¢ is apparent as is
the time-dependent relaxation of the roughening.

The slab spectra provide the best opportunity for com-
parison with two-dimensional systems [12, 5]. In Fig. 5,
only the unstable modes below the roughening contin-
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FIG. 4. Point of maximum height (tip position) (o)
and the total surface area (A) for a typical column sys-
tem as a function of time. The surface area is shown as
\/A(t) — A(700) to highlight the t* growth, with A(700) be-
ing 42693. The tip position saturates at late times as the
tallest dendrite reaches the top of the system. Data are av-
eraged over four runs. The straight dashed lines provided as
references.
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FIG. 5. The power spectra for a slab system scaled by
@?. The large-q end of the spectrum, showing the expected ¢>
roughening modes, is excluded to display the unstable modes
more clearly. Spectra for ¢ = 2400 and 1600 MCS are shown.

uum are shown; they indicate a wavelength of maximum
instability of A\g ~ 50 lattice units with a secondary peak
around 36 units. This is consistent with visual inspec-
tion (Fig. 1), which shows a typical separation between
the instabilities of about 30-40 units. The same spectra
are shown in Fig. 6, scaled with the square of time ¢2; the
fact that they are independent of time is consistent with
the observation that the surface area is growing like ¢2.
The coarsening of the instabilities, as indicated by the
lateral shift in the Ao peak, can be ignored as insignif-
icant; in this respect, the data are very similar to that
previously obtained for two-dimensional systems [5]. The
features to the left of Ag are subharmonics of the primary
and secondary instability peaks; they are located at A ~
66, 83, 100, and 153 units.

The column power spectra, shown in Fig. 7, have better
statistics, although it is clear that Ao is near the size of
the system. In our experience, 128 x 128 x N, is the

70 T x T T
3,

60 -

« 50
Rl

S
p——
-

Z

Z 40}
[«®

a2
[l
i
o
=

ARERTEC

o
30+

20} i

Eh—:251>
R e m e ———
—a
=225
Ara
kel 1

i
o !
/

= 1 1 1 1
8.00 0.02 0.04 0.06 0.08 0.10

FIG. 6. The power spectra from Fig. 5 are shown scaled
by t2. Spectra are shown for t=2400, 2200, 2000, 1800, and
1600 MCS.
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FIG. 7. The power spectra for a column system scaled
by ¢? is shown in a log-log plot. Spectra for t=3000, 2600,
2200, and 1800 MCS are shown. Note the g2 region at large
q, indicative of roughening fluctuations, and the lateral shift
of the mode of maximum instability.

FIG. 8. A time series showing lateral cuts at fixed height
across the growing dendrites in a column system. The dark
areas are the solid dendrite(s).
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FIG. 9. The radial structure factor from the time series
shown in Fig. 8. The time is rescaled as (t —t0)°® to show the
t%5 growth. The initial time to = 1000 MCS is the time at
which dendrites first intersect the cutting plane at N, = 72.

minimum useful system size for the instabilities that we
have been able to observe; results from systems of 64 x
64 x N, clearly show the effects of finite size and are
inappropriate for analysis. Consequently, this limits the
height of the system permitted by hardware constraints
to N, = 100. The go value is distinctly shifted in time by
coarsening of the dendrites; this has been established by
analyzing the perpendicular cross section of the interface
profile at a fixed height. Figure 8 shows a times series
of a typical cross section, starting from ¢t = 1000 MCS
when the interface first intersects the plane. Figure 9
is the measured structure factor which is growing as a
95, This is consistent with the geometric picture of the
cross section of a parabola moving through a plane with
constant velocity. The application of a simple scaling
ansatz shows that the spectra are consistent with this
behavior; the scaling is of the form

1
@/ 1ol 10

FIG. 10. The power spectra from Fig. 7 scaled by the
ansatz P(q,t) = t2+°‘13(qt°‘). The figure shows a plot of g>P
against gt®. Spectra are shown for t=3000, 2800, 2600, 2400,
2200, 2000, 1800, and 1600 MCS.
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P(Q) t) = t2+a15(qta)a

where « is 0.5. To illustrate this, we show in Fig. 10 a
plot of g2 P against qt®.

B. Thermal diffusion

We have also analyzed the demon lattice for additional
insight into the role of thermal diffusion. As described
below, the local temperatures can be derived from the en-
ergy distribution of the demons by an appropriate coarse-
grained average. Figure 11 shows a collection of thermal
fields defined in this way: Each demonstrates some typi-
cal growth behavior based upon a specific choice of sys-
tem parameters (latent heat, undercooling, melting tem-
perature). The temperature range is represented from
cold to hot by a contoured grey scale from black to white.

FIG. 11. Representative thermal fields derived from an
analysis of cross-sectional slices of demon lattices. (a) and (b)
are from column systems while (c)—(e) are from slab systems.
The dark outline is the interface derived from the spin lattice.
The lighter regions (on the bottom) are associated with the
solid; above is the liquid. Temperature is shown as dark for
cold and light for hot. The graininess of the temperature
is related to the limited statistics of the demon distribution.
Note that (d) is from the same simulation trial as shown in
Fig. 1.

Fluctuations in the temperature on short length scales
are due to the discrete nature of demon energy levels
(spin flips are of order Ae ~ 2 J) and the limited statistics
of the demon lattice; each thermal image is based upon a
simple Gaussian spatial-averaging scheme over the near-
est 124 neighbors (i.e., a cube of 5x 5x 5 centered on each
site) with no time averaging. This is adequate to identify
thermal gradients on length scales beyond three lattice
spacings. The actual solid-liguid interface (derived from
the spin lattice) is drawn over the field for reference.

Visual inspection identifies the presence of thermal gra-
dients near the interfaces. As expected, the gradient be-
tween the liquid and solid bulk phases is strongest near
the growing dendrite tips where the velocity is greatest.
It is weaker along the nearly stationary initial interface.
It is also evident that much of the liquid phase around
the base of the dendrites has reached or exceeded the co-
existence temperature. Indeed, where multiple dendrites
appear, the region between them tends to fill with the ex-
cess latent heat produced by the moving interface. This
excess is described by

I'= C(Tm - Tu)/Ay

where I' = 1 when the amount of latent heat released is
identical to that required to heat the supercooled liquid
to Tpy; diffusion-limited processes require I' < 1. As one
of the dendrites begins to pull ahead of the others, it
retards their growth by leaving its excess latent heat in
their path, providing a natural selection mechanism (see
Fig. 1).

Each of the images in the Fig. 11 gamut illustrates the
effect of varying a particular system parameter (see Ta-
ble I). Figure 11(a) is from a 64 x 64 X 96 column system.
Its melting temperature 77, = 0.77, and undercooling
T. = 0.3 are typical midrange values; the degeneracy is
low, 6 = 3, with a I" value of 0.356. While this is much
less than unity, this is relatively large for our model and
it is reflected in the thermal field. There is little excess
heat in front of the interface, which is advancing quite
slowly. Figure 11(b) is for the same values of T}, and T,
but with § = 5.7 and I" = 0.29. The abundance of latent
heat has dramatically enhanced the instability and its
accompanying thermal gradient. Figure 11(c) is from a
8x128 %192 slab system at T,,, = 0.65T, T, = 0.27, and
6 = 6. It shows well-defined growth with little coarsening
and limited diffusion into the bulk. Figure 11(d) shows
a similar system with a higher undercooling T,, = 0.37,
and lower degeneracy 6 = 4; the consequent reduction in
surface tension v (see Table I) results in greater coarsen-
ing and the enhanced spin-flip activity increases thermal
diffusion into the bulk. Figure 11(e) is also from a slab
system; T, = 0.8, T, = 0.4, and § = 2.8. Like 11(a), this
system has a high I' (small excess heat), but the lower
surface tension due to higher operating temperatures re-
sults in increased interface dynamics. Figures 11(b) and
11(e) correspond to the data presented in Sec. V A.

In addition to confirming the diffusive nature of our
model, these images provide invaluable commentary on
how the diffusion is taking place. In particular, it is
apparent that the diffusion occurs on time scales much
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longer than the spin dynamics. This is evident in
Figs. 11(a) and 11(c) where a dark band of solid appears
near the bottom boundary. The brighter band above is
at a higher temperature due to excess heat produced by
the passing of the interface. In these systems, I' < 1 and
clearly the excess heat has not had time to diffuse to the
cooler region below. This implies that the processes rep-
resented here are far from the quasistatic limit. Figure
11(a) demonstrates a related shortcoming of our model;
diffusion into the undercooled bulk is also extremely slow.
Although the hot solid is moving slowly, the heat is not
being transferred into the liquid at a detectable rate; the
gradient is largely restricted to the range of the spin in-
teractions at the interface.

Both of these situations are manifestations of the same
fact: One of the characteristics of the lattice-gas model
is that it is typically quite stiff and thermal diffusion
occurs on time scales much longer than the interface dy-
namics, especially in the melt where low temperatures
reduce diffusion further. Thus our model has only a lim-
ited ability to properly represent thermal diffusion. The
rate of diffusion is directly tied to the rate of spin-flip dy-
namics. At temperatures near T,,, the diffusion process
is occurring on time scales which are at best comparable
to the interface growth whereas at colder temperatures,
spin-flips become infrequent and diffusion almost ceases
to exist. Since most theoretical and experimental results
are based on the quasistatic assumption which presumes
thermal fields to always be in equilibrium, contact with
our simulation results is therefore difficult.

The absence of sidebranching in any of our simulations
is related to the geometry of the system. On the one
hand, this has to do, again, with the limited nature of the
diffusion. In the column geometry, the maximum lattice
size provides insufficient space for more than one den-
drite; the sides of the growing structure “see” themselves
through the periodic boundaries, and secondary insta-
bilities are suppressed by the presence of excess thermal
energy. Multiple dendrites are relatively rare and tend to
obstruct one another for the same reasons. On the other
hand, the anisotropy in the surface tension < can also play
a key role. Thus, in slab systems, although finite size is
not an issue, growth is complicated by the orientation
of the lattice. Only one of the three preferred directions
of growth is coplanar with the slab (i.e., the [111] direc-
tion perpendicular to the initial interface). Consequently,
even well-defined gradients like those seen in Fig. 11(c)
are ineffective at inducing secondary instabilities along
the sides. In both cases, an accelerated diffusion process
is expected to improve the situation by removing excess
heat and enhancing the local thermal gradient.

VI. DISCUSSION

We have shown our instabilities to have the identifiable
characteristics of dendritic growth: consistent physical
appearance, constant tip velocity, measurable instability
modes with a distinct maximum at gg, and scalable power
spectra. The form of the scaling ansatz is simple and
easily related to the geometry of the system.

The results presented in our paper establish the algo-

rithm as a useful technique for the study of the Mullins-
Sekerka instability in three dimensions. We have simu-
lated dendritic growth which, with the exception of side-
branching, exhibits all the behavior seen in physical ex-
periments, and we have shown that the growth can be
observed in a variety of relevant experimental configura-
tions. Our study of the thermal fields has clearly demon-
strated the role of thermal diffusion in controlling the
instability.
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APPENDIX A: TYPICAL MODEL PARAMETERS

Melting temperatures 7}, were chosen around 0.77, (of
the Ising model) to enhance the dynamics, and under-
cooled temperatures in the unstable systems were nor-
mally around 0.37,. Field strengths were of order of
A ~ J, so that degeneracies were in the range 2-5. With
these values, typical values of the capillary length doy and
the diffusion length ! can be derived.

As defined in the text, the capillary length is

do = ’YTmC/A2,

where -y is the surface tension, T}, the melting tempera-
ture, C the specific heat capacity of the bulk phases, and
A the latent heat. Of these parameters, T,, and A are
explicitly known, v can be measured directly by simula-
tion [9], and C can either be measured by simulation [8]
or taken from the mean-field expression. Table I is pro-
vided to give a quantitative sense of the parameter space
available. The entries demonstrate the range of param-
eters for systems which have shown dendritic behavior;
these values are specifically for the systems which gen-
erated Figs. 11(a)-11(e), respectively. They are based
upon mean-field values for C.

TABLE I. The table entries show the range of system pa-
rameters which demonstrate dendritic behavior; they corre-
spond to the thermal images in Fig. 11, in order (a) to (e).
The units of Ty, are in T, of the unmodified Ising model; A
is in units of J; §, C, and I" are dimensionless; dj is in lattice
spacings.

T A B c y do T

0.7 35 3.0 0.68 1.2 0.21 0.36
0.7 5.5 5.7 0.86 1.2 0.11 0.29
0.65 5.3 6.0 0.70 1.1 0.081 0.27
0.65 4.1 4.0 0.60 1.1 0.12 0.23
0.8 3.7 2.8 1.0 1.0 0.26 0.49
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The diffusion length is defined to be [ = 2D /v, where
v is the measured velocity of the unstable interface and
D is the diffusion constant. In the limit of | — oo, the
time scale of thermal diffusion is much shorter than that
for the motion of the interface, and one approaches the
quasistatic limit. The diffusion length can be measured
in a number of ways [5]. The most direct method is to
visually inspect or measure the gradient in the thermal
field ahead of the advancing interface. Linear theory [2]
predicts a simple form for the gradient which is assumed
to be perpendicular to a flat interface:

u(z) = e 2*/' — 1, 2z >0 (liquid),

where v = (T — T,,,)C/A and z = 0 is the position of
the interface. The width of the gradient from T, to T,
is thus of order [. This result presumes the quasistatic
limit. In the slab systems [Figs. 11(c)-11(e)], ! at the
dendrite tips around 15 units. In the column systems, [
is approximately 5 and 9 units for Figs. 11(a) and 11(b),
respectively. Note that there are also gradients clearly
present in Fig. 11(c) along the sides of the dendrites and
at the initial interface. These show larger values for (.
One can conclude from this that the quasistatic limit
is not applicable since one cannot otherwise explain the
different values of [ for equivalent interfaces.

APPENDIX B: CODING OF LATTICE
GEOMETRY

In all cases, the algorithm uses a virtual lattice which
is regular and cubic with Nz x Ny x N, sites; the choice
of nearest neighbors and spin bond strengths determines
which physical crystal structure the algorithm emulates.
The initial interface is always parallel to the X-Y plane of
the virtual lattice. The “sides” of the system are always
periodic; the “ends” are pinned and controlled by infinite
heat baths.

In the case where the nearest neighbors of a site at
i, J, k are defined as the adjacent sites along the Carte-
sian axes (i.e., i+ 1,5+ 1,k +1) and bond strengths are
equal and identical to J of the Hamiltonian, the system
represents the simple cubic (sc) structure.

If the nearest neighbors are specially chosen triplets
in the X-Y planes above and below the site
(i-e-, ".1,.7'1’ k— 1; i2aj2,k -1 i3’j3ak - 1; 7:4aj47k + 1;
is,J5,k + 1; 16,6,k + 1) and bond strengths are equal,
the lattice represents the sc structure oriented with the
(111) plane parallel to the X-Y plane. Each X-Y plane
k defines the triplet neighbors for a site differently ac-
cording to its designation as one of the three distinct
laterally displaced sc (111) planes; the sc structure is
constructed by stacking these X-Y planes cyclically (i.e.,
1,2,3,1,2,3,1,...).
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(d)

FIG. 11. Representative thermal fields derived from an
analysis of cross-sectional slices of demon lattices. (a) and (b)
are from column systems while (c)-(e) are from slab systems.
The dark outline is the interface derived from the spin lattice.
The lighter regions (on the bottom) are associated with the
solid; above is the liquid. Temperature is shown as dark for
cold and light for hot. The graininess of the temperature
is related to the limited statistics of the demon distribution.
Note that (d) is from the same simulation trial as shown in
Fig. 1.



FIG. 2. A representation of a 128 x 128 x96 column system
surface. The higher surfaces are shown in lighter greys. The
image shown is for ¢ = 3000 MCS.



